
CPS352 Lecture - Support for Object-Orientation

Last revised January 10, 2019
Objectives:

1. To elucidate problems with the relational model for some applications
2. To introduce OO extensions to the basic relational model

Materials:

1. Projectable of diagram showing OO representations of a relationship by a
pointer.

2. Projectable of Sadalage/Fowler Figure 1.1

I. Introduction

A.The relational model has become the dominant database model and is used for
most applications.

1. Support for integrating data from multiple applications, and allowing
multiple applications to share a common database.

2. An interactive query facility which allows accessing data without custom
programming through the use of a common language: SQL.

3. Strong support for ACID transactions that are central to maintaining
database consistency in the face of concurrent operations and threats of
data lost due to things like hardware failure.  
 

This is actually not unique to the relational model nor do all relational
databases support transactions.

a) Databases based on other models can also offer support for transactions.

b) Not all relational databases support transactions. For example, if
transaction support is wanted in mysql, one must specify this when
creating the database - otherwise ACID transactions are not supported.

�1

c) However, support for ACID transactions has become recognized as a
key feature of relational DBMS's.

B. However, the relational model itself does create some difficulties because of
what has come to be known as the "impedance mismatch" between OO
programming and data storage in relational tables.

II.Differences Between the Models

A.The OO and relational models have very different histories.

1. OO: Comes out of the world of discrete simulation. Much
subsequent work was motivated by the development of GUI's in the
desktop/laptop/mobile device world. OO is the natural paradigm for
designing a GUI and for certain kinds of problems involving objects with
complex structure (e.g. computer-aided design).

2. Database systems: comes out of the world of business data
processing. Much of the work has been done in the mainframe world.
Database systems historically have had a strong batch processing flavor,
and most data is of atomic types (numbers, strings, dates etc.)

B. The OO and relational have very different fundamental concepts.

1. In the OO world, an object has three essential properties: identity, state,
and behavior. These are distinct ideas, in the sense that it is conceivable
that two objects with different identity might have the same state. Of
course, all objects of the same class have the same behaviors.  
 

Typically, the identity of an object is established by the location in
memory where it resides - i.e. when all is said and done an object’s
identity is basically a memory address. This, of course, is not of any
semantic significance, and may even change from run to run of the same
program.

�2

2. What are the essential properties of a table row? Certainly, a row also has
identity and state. But - in the basic relational model, rows do not have
behavior. More importantly, though, the notions of identity and state are
not distinct: it is inconceivable that a given table might have two rows
with same state. [This would violate the set/primary key concept] That
is, OO table rows really only have one property: state.  
 

Thus, the identity of an entity is based on the value of certain of its
attributes - something which is semantically meaningful, and doesn’t
change from run to run of the same program.

3. This sometimes leads designers of OO classes to incorporate some sort of
“key” attribute in order to provide semantically meaningful identify and
to guarantee that no two objects have identical state - e.g.  
 

class Product  
{  

int id;  
...  

 

strictly speaking, this is not necessary in an OO system (unless some sort
of map is going to be needed to locate the objects, of course) However,
something like this is often needed in creating a relational scheme if one
cannot guarantee that the remaining attributes of an object will be unique.

4. That is, we have the following:  
 

OO: identity ≠ state  
relational: identity is the same thing as state

C. Related to this is how the two “worlds” handle relationships between objects.
Though both can use ER diagrams as design tools, they translate
relationships quite differently.

1. In an OO system, relationships (associations) are handled by pointers
(called references in Java) - an object that is associated with another
object contains a reference to the location in memory where the other

�3

object “lives” - e.g.  
 

�  
 
is represented in memory by  
 

�  
 
PROJECT

2. In a relational system, relationships are managed by foreign keys. Often,
relationships are modeled by tables as well - i.e. a relational database
table may correspond to an entity (object) or a relationship (association
between objects).

3. There are two consequences of this difference:

a. Foreign keys are semantically meaningful; pointers to locations in
memory or on disk are not (they’re just numbers, and not particularly
meaningful ones at that.)  
 

someObject: anotherObject:

Binary representation of
someObject

Binary representation of
anotherObject

�4

Example: Can you easily tell someone your student ID or SSN if
asked?  
 

Can you easily tell someone the location on disk where information
about you is stored by the Gordon administrative system?

b. From a performance standpoint, there is a huge difference. One can
follow a pointer directly to the object it references; but following a
foreign key involves some sort of search or index lookup.
Quantitatively, the time difference - even in the presence of an index -
may take much less than a microsecond versus a few milliseconds - a
ratio of over 1000:1.

c. As an illustration of the issues of efficiency and semantic
meaningfulness, consider the following:  
 

Suppose you wanted to find the office of a given faculty member,
given their name. You would have to look up the office number (say
on the go site), and then go there - something which would take some
amount of time and effort. But if you had the office number to begin
with, you could go there directly without having to look anything up.  
 

OTOH, as I was revising a similar lecture several years ago, someone
asked me “where do I find room 209?” After playing “20 questions”
for a while, I determined that what she was looking for was the
secretary's office - at which point giving directions became easy. Like
most people, I can remember where a person's office is much more
easily than I can remember a room number - when I need to drop
something off for the secretary, I never think “I go to room 209”.

d. That is, we have the following:  
 
OO: relationship (association) modeled by pointer  
relational: relationship modeled by foreign key  

�5

D.Normalization requirements result in often needing to store individual
objects in multiple tables.

1. Relational databases need to be normalized. Even 1NF precludes non-
atomic attributes. We have seen how normalization to 4NF requires us to
isolate multivalued attributes in their own relation - e.g.something like  
 
 

�  
 
normalizes to two tables: (ABDE) and (AC) to satisfy the requirements of
4NF

2. However, OO classes can contain attributes which are collections of
various sorts, and can contain non-atomic attributes.

3. This has some profound implications, which someone has illustrated as
follows: 
 

Is it possible to store a car in standard office filing cabinets?  
 
ASK  
 
Yes - if you’re willing to take it apart far enough! The problem comes in
putting it back together when you need it.

4. The difference between OO and relational representations for information
is summed up neatly by the following diagram from Sadalage:  
 
PROJECT Figure 1.1 
 

A B C D E

�6

where the OO aggregate might be modeled by a class like the following:  
 
class someClass  
{  
 private int id;  
 private Customer customer;  
 private Set<OrderLine> lineItems;  
 private CrediitCard paymentDetails;  
 ...

E. Some writers have pointed out that there is also a fundamental philosophical
difference between the two approaches to representing information.

1. Database systems seek to foster “data independence” - the idea that data
should be stored in such a way as to be independent of the programs that
use it - which facilitates sharing of data between application areas and the
ability to perform ad-hoc queries.

2. Object-orientation emphasizes the close connection between data and
behavior. An object doesn't just incorporate data - it also incorporates
methods that operate on the data. Moreover, one of the components of
the OO “PIE” is encapsulation, which precludes operating on data except
through the set of methods that a class furnishes.

3. In a generic database, one often needs to use the data in ways that might
not have been anticipated when the database was designed. This can be
easily done in SQL, of course, but it means breaking encapsulation if he
data being stored actually represents objects that belong to OO classes.  
 

What does one do then? Wait for new methods to be coded? Break
encapsulation? Neither seems like a good solution.

F. Differences like these between the two models create challenges for application
programmers who are writing an OO program but need to store data in a relational
database. This, in turn, engenders greater development effort for applications, and
flies in the face of approaches such as agile development.

�7

III.Approaches to Dealing With These Issues

A.One might simply live with the differences. Essentially, this is what many
existing systems do. This means, of course, that the programmer must
consciously arrange for transmission of entities between main memory and
the database, and must explicitly code transformation between information
representations when needed.  
 

Example: This is essentially what you are doing in your programming project
by embedding SQL statements in Java code.

B. Another possibility is to develop a new object-oriented database model.
There was a lot of interest in this at one time, but efforts to produce a
standardized OO model have been unsuccessful and there is currently little
work in this regard except for certain niche areas.

1. For example, the 3rd and 4th editions of our text had a separate chapter
on “Object-Oriented Databases”, while the 5th and later editions combine
this with the Object-relational approach to produce a single chapter on
“Object-Based Databases”.

2. However, OODBs are quite important in a number of niche markets (e.g.
medical information systems), and new developments in this area are
always possible.)

C. A third possibility is to extend the relational model to make it a better match
for the requirements of OO - creating what is often known as an object-
relational model.

1. Several of the extensions to SQL in SQL 1999 (and beyond) have been
concerned with reducing the impedance mismatch between the relational
model and the needs of OO systems, by moving away from the
restrictions the straight relational model imposes on attributes.  

�8

a. Allowing non-atomic data types

(1)Columns whose values may contain internal structure (i.e. have
fields of their own.  
 

The SQL 1999 standard specifies a create type .. as facility
which allows defining a structured type.

(2)Columns which may store a collection (e.g. set, array) of value
rather than a single value - a relation nested within a relation. A key
motivation here is efficiency: multivalued attributes are associated
with multivalued dependencies, which force decomposition during
normalization and lead to the need for joins in queries. However, a
join is inherently a computationally expensive operation. and
transferring an object containing a collection between memory and
the database typically requires a loop that translates between
members of a collection and rows in some table arising from
normalization.  
 
The SQL 1999 standard defined array and multiset data types.
A table column can be defined as some standard type, followed by
either array[some constant] or multiset . What this does, in
effect, is to create a attribute for each row in the table which is
itself another table. The DBMS transparently translates between a
collection field in an object and a table columns in a database row.

(3)Support for complex data types (binary large objects (blob) and
character large object (clob)).  
 
The DBMS has no knowledge of the internal structure of a large
object; it simply allows reading/writing the entire object.

(4)Reference data types

(a)System-generated object identifiers (oids)

�9

(b)The ability for a field to store the oid of a row in another table
(in effect a pointer to it that can be looked up quickly in a hash
index) rather than a key that must be looked up by searching or
in a more sophisticated index. Again, efficiency is a key
motivation.

b. Direct support for inheritance

(1)Types based on other types - so that a type includes fields of its
own plus fields inherited from a parent type or types.

(2)Tables based on other tables - so that a given row, when inserted
into a subtable, also becomes a row in a base table. (This moves
into the realm of class = entity-set, of course)

(3)Note that these are really two different extensions - in the one case the
domains of individual columns use inheritance; in the other case,
whole table structures use inheritance. A given database
implementation may, of course, implement neither, either or both.

c.Storing procedures in the database along with the data

(1)As methods of specific data types.

(2)As “stand-alone” functions or procedures.

(3)This is actually what something like sqlj does - SQL code
embedded in a Java program is compiled into stored procedures stored
in the database by the bind operation.

d. Extensions intended to make SQL be a more fully-functional
programming language in its own right, including various control
structures and an ability to call routines written in other languages from
within SQL.  

�10

 

Example: the CASE construct in SQL you used in an earlier homework.

2. Various commercial systems developed during the 1990's incorporated
some or all of these facilities, which became part of the 1999 and
subsequent SQL standards - though standardization of implementations is
still a ways off and no vendor comes even close to fully supporting the
standard. (And vendors often do things contained in the standard in their
own, non-standard way, since incorporation of these ideas into
commercial systems preceded standardization.)

D.A final approach is to move away from the relational model altogether -
which leads to various models lumped together under the "NoSQL" heading,
which we will look at next time.

�11

